Toy BASIC

Reference Manual

Steve Toner

Revision 1.0
June 2017

Copyright © 2017 by Stephen G. Toner

toybasiccomputer@gmail.com

All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the
express written permission of the publisher except for the use of brief quotations in a book review or scholarly journal.

Conventions

The following conventions are used in this document:

Literal text (e.g., a keyword or command) is shown in ALL CAPSs.
Some command or statements fields are shown in angle brackets:
<line> is a line number, from 1-9999
<expr> is a numeric expression

<progname> 1S a program name

<svar> is a (scalar) variable name from A-Z
<avar> is an array variable name from A-Z
<var> is either a scalar variable, <var>, or an array reference, <avar> (<expr>)
<val> is a numeric literal
<string> is a string literal enclosed in quotes (*‘)
<text> is a text string NOT enclosed in quotes
Optional Fields

Optional parameters are enclosed in square brackets: LIST [<line>]

Multiple Valid Parameters

If there is more than one acceptable option for a field, the valid options are shown in curly braces:
FOOBAR {<string>|<expr>}

In this example, you must provide either a <string> or an <expr> with the FooBAR command or
statement.

Typefaces

THIS TYPEFACE IS USED TO SHOW USER INPUT
THIS TYPEFACE IS USED TO SHOW OUTPUT

Keyboard Input
Pressing the ENTER or RETURN key is shown as:
Pressing the Backspace or Delete key is shown as: «—

Holding down the Control key while pressing a key is shown as: ctrl-S

Table of Contents

IEEOAUCTION. ...ttt et b et a e bttt e it s bt e bt e et e e bt e bt eatesbe e b e eaneebteenneeas 1
(0015 21 2 (o) 4 FOU USSP 5
COMIMANAS. ...ttt ettt a bt e e s bt et ea b eh e et e e st e sb e et e e st e sbe e bt e et e e bt e e nsteesbbeesateennbeenas 7
R q o) (e (o) 4 1SRRI 11
STALEIMIEIIES. ...ttt ettt ettt e eat e et e s et et e e bt e et e e sb et et e e nh b e ea bt e e et e e e eabe e e e aneees 13
FUNCHIONS. ..ttt et bt e e bt e bt e e bt e s he e et e e s abeenbeesbbeeabeenbeeesanbeeenans 21
APPENAIX A RAM USAZE....cuuiiiiiieiieiiiieiieeiie ettt et e ette e bt eseteebeestteebeessaeesseesseesnseenseeenseeseaensseeessseeans 23
Appendix B: Program ENCOAING........cccviiiiiiiiiiieciieee ettt e e e e e e e 29
Appendix C: Flash Memory Program StOTage..........cuevirriiieriiiiiieniieeieerte ettt siee e es 33
Appendix D: Schematic DIaIaml.........cccuieeiiiiiiiieciie ettt e e e e e e st eesbee e e e snaseaeeeeesnseeas 35

RETETEIICES. ..ttt ee e e e ee e ee e e e e e eneeeeeenneeeemnnmeneeeeenes 37

Introduction

The Toy BASIC Computer is a small computer based on the Microchip PIC18F26K22 processor that
implements a stripped-down version of the BASIC programming language[1]. It interfaces to a
terminal (or more likely, a terminal program running on another computer) via RS-232 and includes
non-volatile memory to store up to 64 BASIC programs. Due to the limited amount of RAM in the
processor, program size is limited to something less than 4K bytes. The BASIC interpreter
implementation uses a variety of tricks to minimize RAM usage, but still has numerous limitations.
That's why it's called Toy BASIC.

The BASIC Programming Language

The BASIC (Beginner's All-purpose Symbolic Instruction Code) was conceived by John Kemeny and
Thomas Kurtz at Dartmouth College. The initial implementation was completed in 1964. Even though
it was still the early days of computing, Kemeny believed that everyone should be computer literate,
realizing that computers would “have a significant effect on all businesses and most private lives” in
the future and desired to enable students in fields other than science and mathematics to program them.

But there is a downside to learning BASIC. Edgser Dijkstra wrote in [7]:

1t is practically impossible to teach good programming to students that have had a
prior exposure to BASIC: as potential programmers they are mentally mutilated
beyond hope of regeneration.

Consider yourself warned. However, if you wish to become “mentally mutilated beyond hope of
regeneration,” I give you Toy BASIC.

Background

I had a couple of PIC18F26K22 microcontrollers left over from a project, and was looking for
something fun to do with them. These are 8-bit processors in 28-pin packages with 64kB of program
memory and 3896 bytes of RAM. This is an unusually large amount of memory for an 8-bit PIC®
processor, so I wanted a project that would make use of it. Something made me think of BASIC; it might
have been a video on YouTube. In any case, it seemed a good project. Many people were introduced to
computers via BASIC, and forty years ago a single-chip computer that ran BASIC would have been
incredibly cool (today it's just a joke). So BASIC it would be... I decided on a requirement that the
implementation be complete enough to run a version of the “Hunt the Wumpus” program.

Hardware Features

Powered by micro-USB port.
You probably have an old phone charger lying around that you can use to power the
device.

Field-upgradeable firmware.
Implements In-Circuit Serial Programming (ICSP™) so that firmware updates can be
easily applied.

Power and Running indicators.
LEDs show that the unit is getting power, and that it has properly initialized.

RS-232 interface.
Just like in the 1970s, the device communicates via an RS-232 serial port to a terminal
(or terminal emulator running on your real computer). Multiple data rates are supported.

Built-in program storage.
The computer has 256KB of flash memory to store your BASIC programs so you don't
have to type them in every time or load them through the serial port.

Software Features

Implements a subset of the BASIC programming language. The code is written in assembly language
to make most efficient use of scarce RAM.

Program lines are “compiled” on entry and stored in RAM in an intermediate form that both saves
precious RAM space and makes execution of the code easier and faster. See Appendix B for details.

Supports integer numeric values between -32768 and 32767 (inclusive).
Supports single-letter variable names.

Supports one-dimensional arrays. Array names are a single letter, and an array may have the same
name as a variable.

Keyboard Shortcuts and Standardized Output
Toy BASIC allows several shortcuts when entering a program to minimize typing effort:

* The LET keyword is optional;

* Asemicolon (;) may be used in place of the PRINT keyword;

* Spaces are not necessary in statements and expressions, or before or after keywords (except
between the variable name and GOTO or GOSUB keyword in an ON...GOTO or ON...GOSUB
statement);

* Leading zeros are not necessary in line numbers.

However, when a program is LISTed, it is always displayed in a standard format:
* Line numbers are always displayed as 4 digits;
* The LET keyword is always displayed;
* The PRINT keyword is always displayed;
* Extra spaces are removed from the line;
* Keywords are set off by spaces

Example:
*10X=(7+8) /3 (user enters program using shortcuts)
*20;XA
*30END
*LIST
0010 LET X=(7+8)/3 (listing shows program in standard format)
0020 PRINT X
0030 END

*

Limitations

Every BASIC language implementation is different, with its own quirks, limitations and extensions.
These are the limitations of the Toy BASIC implementation, along with a discussion of why each
limitation exists.

Only upper-case is supported.
This is a throwback to the way things used to be when BASIC was first implemented.
The I/O devices were typically Teletype Model ASR-33 terminals.

Floating point is not supported.
OK, I'm just lazy. Integers require 2 bytes of RAM per variable. Floating point would
require 4 bytes (or more) per. Plus a whole lot more firmware (that's the lazy part).
Maybe in the future.

Only single-character variable names are supported.
A full BASIC implementation allows variable names that are a single letter (e.g., [) or a
single letter followed by a digit (e.g., A1, Z7). Each variable takes up 2 bytes of RAM.
Limiting the number of variables to 26 (A-Z) allows all the space for variables to be
preallocated (that's only 52 bytes) without seriously impacting available program
memory. Allowing for single letter plus single letter/single digit variable names would
require eleven times as much memory (572 bytes), or a bunch of PIC® code (plus more
than 1 extra byte of RAM per variable) to keep track of which variables were actually
being used.

No string variable support.
It would be easy enough to add this, but allocating string memory would take away from
program memory (only when string variables were used). May be added in the future.

Two-dimensional arrays are not supported.
A full BASIC implementation would support one- or two-dimensional arrays. Toy
BASIC only supports one-dimensional arrays, but there is nothing that you can do with

two-dimensional arrays that you can't do with one-dimensional arrays (and a bit more
work on the programmer's part).

Maximum array size is 126 elements
Well, it just is. This saves a bit of memory overhead. And it's enough to run Hunt the

Wumpus.

No user-defined functions.
The DEF FNx functionality is not supported.

No file I/O.

You can save your program to the built-in flash storage device, but you can't create files
in your program on the device.

Pre-installed Sample Programs

Toy BASIC comes with several sample BASIC program pre-installed. These were used to test the
functionality of the implementation, and provide coding examples for a novice programmer who
wishes to learn the BASIC language. Some of these programs are based on the classic book BASIC
Computer Games [6] and modified to run on the Toy BASIC computer.

The programs are:

BATNUM
CALENDAR
HAMMURABI
PRIMES

SLOTS
WUMPUS
WUMPUS INSTR

A “battle of numbers” game where the computer is your opponent.
Prints a calendar for user-supplied month and year.

A game where you try your hand at governing ancient Sumeria.
Computes prime numbers.

Simulates a slot machine.

The classic “Hunt the Wumpus” game.

Instructions for the “Hunt the Wumpus” game.

Operation

Hardware

To use the Toy BASIC computer, do the following:
Connect the RS-232 terminal

The Toy BASIC computer communicates with a terminal using an RS-232 serial
interface. It has a Female DB9 connector that supplies the RS-232 signals. If you are
using a USB-to-RS-232 adapter on your PC, then it should have a male DB-9 connector
that will plug directly into the connector on the Toy BASIC computer board. If your
computer uses a DB-25 connector for its serial port, then you will need an adapter to
connect between the two. If you're using a printing terminal, install jumper J1. Leave it
unjumpered for a CRT. The jumper setting determines how deleted characters are
indicated: on a printing terminal, a back-arrow (or underscore) character is echoed; on a
CRT, the last character is erased from the screen.

Select the baud rate

Baud is just a fancy word for data signaling rate. Oh, it's more complicated than that,
but you don't really want to know. Look it up if you're curious. Anyway, both devices
(the Toy BASIC computer and your terminal) must be set to the same rate in order to
communicate. The following data rates are supported: 300, 1200, 2400, 9600, 19200,
38400, 57600 and 115200 bits per second (bps). You set the rate with DIP switches on
the Toy BASIC PC board; the switch settings are printed on the board. As to whether
setting a switch to ON represents a 0 or a 1, don't worry about it — it'll work either way.
If you're a normal person and ON means 1, then that will work. If you're an electronic
engineer who knows that ON typically means the input is grounded and therefore
represents a value of 0, go ahead and set the switches that way. The wonder of having
an extra switch allows it to work either way. For a proper retro experience use a low
baud rate (300 or 1200).

Connect the power

The Toy BASIC computer is powered by a micro USB connector. You can use an old
phone charger if it's got the right connector. It draws less than 100ma, so any power
supply will do. Or you can connect it to a USB port on your computer.

When power is applied, Toy BASIC displays a welcome message that indicates the version and build
date of the firmware, and a fortune. This is followed by a READY message and the command prompt

(*):

TOY BASIC REV 1.0 MAY 1, 2017
EVERYTHING OLD IS NEW AGAIN

READY

*

There are two LEDs on the board: one labeled Power and one labeled Running. Both of these should
light up and the Toy BASIC computer should start communicating with your terminal. If the Power
LED does not light, you've got a problem with your power supply. If the Running LED does not light
up, there is some internal problem that prevented the Toy BASIC computer from initializing properly.
If both LEDs come on but you get garbled output on your terminal, most likely the baud rates of the
two devices do not match. If you get no output at all, check your serial cable. The Toy BASIC port is
wired as a DCE port, with transmitted data on pin 2 and received data on pin 3.

Keyboard Input

Toy BASIC supports several special characters to control operation.

Backspace
DELETE
RUBOUT
\

ESC

ctrl-L

ctrl-S
ctrl-Q

-or-
-or-

Deletes the previous character on the input line.
Deletes the entire input line

Pressing the ESC key terminates a running program. It also deletes the input line
and returns to the prompt (i.e., acts the same as a \ character) when in command
mode.

On a printing terminal, redisplays the current input line. No effect on a CRT
terminal.

Pauses output (and program execution) until ctrl-Q is pressed.

Resumes output (and program execution) paused by a ctrl-S.

Commands

Commands control program loading and execution. The command prompt is an asterisk (*).
Commands are entered at the prompt and executed immediately.

CONTINUE

The CONTINUE command resumes execution of a stopped program (either one that executed a STOP
command or was stopped by pressing the <ESC> key) from the point where it was stopped. It can also
be used to resume execution after the program stops due to an error; in this case, the line that caused
the error is re-executed. This allows the programmer to modify the bad line of code and resume
execution.

Syntax: CONTINUE

Example:

STOPPED AT 0110

* CONTINUE.

DIVIDE BY ZERO AT 0120
*LIST 120

0120 LET A=B/C+1

*120 A=B/(C+1)

* CONTINUE.

DELETE

The DELETE command deletes a program from long-term storage. The user is asked to confirm his
desire to delete the program. A'Y (yes) conforms the deletion, an N (no) or ESC aborts the request.

Syntax: DELETE <progname>

Example:
*DELETE TESTPROG.J
ARE YOU SURE? Y

*

DIR

The DIR command lists the names of the programs that are saved in long-term storage and the size of
each.

Syntax: DIR

Example:
*DIR.
BATNUM 94 LINES 1712 BYTES
CALENDAR 85 LINES 1467 BYTES
HAMMURABT 144 LINES 3049 BYTES
PRIMES 14 LINES 166 BYTES
SLOTS 109 LINES 1977 BYTES
WUMPUS 169 LINES 3010 BYTES
WUMPUS INSTR 42 LINES 1760 BYTES
*

LIST

The LIST command outputs the current program, or a single line of the current program, in ASCII to
the RS-232 port.

Syntax: LIST [<line>]
Example:
*LIST 20
0020 PRINT “HELLO WORLD”
*ILIST.)

0010 REM TEST PROGRAM
0020 PRINT “HELLO WORLD”
0030 END

*

LOAD

The LOAD command recalls a program from long-term storage into RAM so that it may be edited or
run. This command does not merge the new program with a program in memory: any current program
in memory is erased completely before the new program is loaded.

Syntax: LOAD <progname>

Example:
*TL,OAD WUMPUS.
READY

*

NEW

The NEW command erases the current program from memory.
Syntax: NEW

Example:
* NEW.
READY

*

RENUMBER

The RENUMBER command renumbers the statements in the current program.
Syntax: RENUMBER

Example:
* RENUMBER.
READY

*

The renumbered program starts at line 10, and increments the line number by 10 for each subsequent
line of the program.

RUN

The RUN command clears all variables, initializes the random number generator and starts execution
of the current program.

Syntax: RUN

Execution begins at the lowest line number.

SAVE

The SAVE command writes the current program to long-term storage so that it may be recalled later. If
a program with the same name already exists, the user is prompted to confirm that he will overwrite the
existing program. A'Y (yes) response saves the program, overwriting the old version. An N (no) or
ESC leaves the existing saved program unchanged.

Syntax: SAVE <progname>

<progname> can be up to 15 characters long and may contain any printing character that you are
allowed to enter. Spaces are allowed in a <progname> as well.

Example:
*SAVE TESTPROG.
PROGRAM ALREADY EXISTS. OVERWRITE IT? Y

*

SIZE

The SIZE command displays the program size in lines and the amount of program memory used and
still available.

Syntax: SIZE

Example:
*SIZE.]
PROGRAM SIZE: 94 LINES.
MEMORY USED: 1712 BYTES; AVAILABLE: 1616 BYTES

*

WARRANTY
The WARRANTY command prints the warranty disclaimer from the GNU license.

Syntax: WARRANTY

Example:

* WARRANTY.
DISCLATIMER OF WARRANTY

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPATR OR CORRECTION.

*

10

Expressions

Toy BASIC supports two types of expressions: string literals and numeric expressions.

String Literals
String literals are used in PRINT statements.

A string literal is enclosed in double quotes. Valid characters are ASCII characters with values from 20
hex through 5F hex, excluding 22 hex (double quotes). These include space, all upper case alphabetic
characters (but not lower case), digits 0-9 and the following additional printing characters:

PHSS& () %+, —. /1 <=>2Q[\]1"_

Example string literals:

“WHEN IN THE COURSE OF HUMAN EVENTS”
%1024

“TO: TOMLINSON@BBN”

%$5.00 FOR A CUP OF COFFEE??2”

Numbers

Toy BASIC only supports 16-bit signed integers. This provides a range of -32768 to 32767 (inclusive)
for all numeric values.

Variables

Toy BASIC supports two kinds of variables: scalar and array. A scalar variable is named by a single
letter (A-Z) and holds a 16-bit integer value. An array is also named by a single letter (A-Z), but may
contain more than one element, each of which holds a 16-bit integer value. An array variable may have
the same name as a scalar variable, but they are different variables in completely different memory
locations.

Functions

Functions are named by a three-letter name. Toy BASIC implements a limited number of built-in
functions.

11

Numeric Expressions

A numeric expression is a combination of numeric values, variables and function calls bound together
by arithmetic operations. Expressions may also contain parentheses to modify the default precedence
rules when evaluating an expression.

Operations
There are two unary operators: + and -, and five binary operators: +, -, *,/, and .
Expression are evaluated from left to right, and the order of precedence of the operators is:

1. Expressions in parentheses. When parentheses are nested, the innermost expression is
evaluated first

2. Exponentiation (")
3. Unary + or -
4. Multiplication and division (*, /)
5. Addition and subtraction (+/-)
Thus, -32 is evaluated as -9. The 3”2 subexpression is evaluated first, followed by the unary -.

2*(3+5)/4 gives a result of 4. The parenthesized expression (3+5) is evaluated first, giving a result of
8. Then 2*8 is evaluated, giving a result of 16. Finally, 16/4 is evaluated, giving a result of 4.

Equal priority operators are evaluated from left to right. This is important to keep in mind, as Toy
BASIC uses integer arithmetic, and some precision can be lost. 2*5/3 gives a result of 3 (equivalent to
10/3), while 2*(5/3) gives a result of 2 (equivalent to 2*1).

12

Statements

A BASIC program is made up of statements. Each statement consists of a line number followed by a
keyword specifying the operation to be performed, optionally followed by additional arguments for the
operation. Statements are entered at the command line prompt (*), but rather than being executed
immediately they are stored in RAM to create the program.

Line Numbers

Line numbers are integer values between 1 and 9999 inclusive. Normal program execution is in line
number order (though the program may be entered out of order — a LIST command will always show
the program in order). GOTO, GOSUB, RETURN and NEXT commands cause the program to
execute out of order.

Entering a statement with a line number that already exists in the program will cause the new statement
entered to replace the existing statement. Just entering a line number will delete that line in the current
program, if it exists.

DIM

The DIM statement allocates space for (“dimensions”) an array variable. Only one-dimensional arrays
are allowed. The maximum size of an array is 126 elements. Array variables are accessed by
specifying the array variable name (a single letter), and the index into the array in parentheses. Array
indexes start at 1.

Syntax: <line> DIM <avar>(<val>)
Examples:
0010 DIM A(10) Allocates 10 words of memory
0020 DIM B(100)
0030 LET A(1)=1 Assigning to an array variable
0040 LET A=A(1)*10 Use of array variable in expression
END

The END statement terminates execution of the program. The program has “completed” and cannot be
resumed with the RESUME command. There can be more than one END statement in a program, and

END does not have to be the last line (i.e., highest line number) of a program. It is merely the last line

to be executed.

Syntax: <line> END

13

Examples:
0010 GOSUB 1000
0020 PRINT “WORLD”
0030 END
1000 PRINT “HELLO”;
1010 RETURN

FOR-NEXT

The FOR statement begins an iterative loop. Statements between a FOR statement and its matching
NEXT statement are executed as long as the loop conditions hold true. The FOR and NEXT statements
specify a control variable, which can be any scalar variable. The FOR statement specifies the starting
value for the control variable, the terminating condition, and optionally the value to increment or
decrement the control variable by for each iteration of the loop (the STEP value). If no STEP value is
specified, a value of 1 is used.

The NEXT statement indicates the end of a loop. Control transfers back to the matching FOR
statement, which increments or decrements the control variable and checks the termination condition.

SynHDC <line> FOR <var>=<expr> TO <expr> [STEP <expr>]
<line> NEXT <var>

When the termination condition is met (whether on the initial FOR statement or after some number of
iterations through the loop), the program continues execution at the line following the loop's NEXT
statement.

Nested FOR-NEXT loops are allowed (up to a maximum nesting level of 15).

Examples:
0100 FOR I=1 TO 10 Count up from 1 to 10
0110 FOR J=9 TO 1 STEP -1 Count down from 9 to 1
0120 PRINT “.”;
0130 NEXT J Goes back to line 110 until J is <=1
0140 PRINT “!”,
0150 NEXT I Goes back to line 100 until I is >= 10
0160 FOR N=1 TO -10 Terminating condition met immediately
0170 PRINT “HELLO?” This line is never executed
0180 NEXT N
0190 END
GOSUB-RETURN

The GOSUB statement transfers control to the specified line in the program (a “subroutine”) and
remembers where it came from. A RETURN statement returns control to the line following the
GOSUB line. Nested GOSUB calls are allowed, up to a depth of 16 calls.

14

Syntax: <line> GOSUB <line>
<line> RETURN

Examples:
0100 LET A=10
0110 GOSUB 0200
0120 LET A=1000
0130 GOSUB 0200
0140 END
0200 REM IT IS OK FOR A REM STATEMENT TO BE THE TARGET OF GOTO OR GOSURB.
0210 PRINT A, A*10
0220 RETURN

GOTO

The GOTO statement transfers control to the specified line in the program. If the specified line number
does not exist in the program, an error occurs.

Syntax: <line> GOTO <line>

Examples:
0010 GOTO 0020 Jump forward
0020 GOTO 0010 Jump backward
0100 GOTO 0100 Infinite loop!

IF

The IF statement optionally transfers control to another statement in the program, depending on the
result of a comparison between two expressions. If the comparison succeeds, control is transferred to
the specified line number. If the comparison fails, program execution continues at the next statement
following the IF statement.

Synuuc <line> IF <exprl> <relop> <expr2> THEN <line>

<relop> is one of the following:
= Transfers control to <1ine> if <expr1> is equal to <expr2>

<> Transfers control to <1ine> if <expr1> does not equal <expr2>

> Transfers control to <1ine> if <expr1> is greater than <expr2>

>= Transfers control to <1ine> if <expr1> is greater or equal to <expr2>
< Transfers control to <1ine> if <exprl> is less than <expr2>

<= Transfers control to <1ine> if <expr1> is less than or equal to <expr2>

15

Examples:
0100 LET A=10
0110 IF A<10 THEN 0200
0120 IF A>1000 THEN 0200
0130 IF A=(A+1) THEN 0200
0140 IF A*A<>A"2 THEN 0200
0150 IF SGN(A)<=0 THEN 0200
0160 IF RND(A)>=A THEN 0200
0170 END
0200 PRINT “WE SHOULD NEVER GET HERE!”
0210 END

INPUT

The INPUT statement reads the value of one or more variables form the keyboard. The variables may be
scalar variables or array references. It displays a '?' prompt and then allows the user to enter a list of
comma-separated integer values, which are assigned to the specified variables. Extra values entered by the
user are ignored. If the user does not enter a sufficient number of values, or enters invalid numeric values (a
string, say), then the INPUT statement ignores the input line, outputs "\?' and the user must re-enter the line
correctly.

Syntax: <line> INPUT <var>[,<var>...]

Examples:
0010 DIM A(6)
0020 PRINT “ENTER BIRTHDAY (MONTH, DAY, YEAR)”;
0030 INPUT M,D,Y
0040 FOR I=1 TO 6
0050 PRINT “HOW MUCH IS IN ACCOUNT #”;I;
0060 INPUT A(I)
0070 NEXT T

LET
The LET statement assigns a value to a variable. The LET keyword is optional.

Syntax: <line> LET <var> = <expr>
<line> <var> = <expr>

Examples:
0010 LET A = 10 the value of Ais 10
0020 LET B = A-5 the value of B is 5
0030 LET C = A/B+2*3 the value of C is 8

16

ON...GOTO and ON...GOSUB

The ON...GOTO and ON...GOSUB commands transfer control to one of a number of lines, depending
on the value of the specified variable. The first line number in the list corresponds to a variable value
of 1. If the value of the variable is less than 1 or greater than the number of target line numbers,
execution continues at the instruction following the ON...GOTO or ON...GOSUB statement.

Syntax: <line> ON <var> GOTO <line>[, <line>...]

<line> ON <var> GOSUB <line>[, <line>...]

Examples:
0010 LET A=10
0020 ON A GOTO 100,110,120 goes to line 30
0030 LET B=-1
0040 ON B GOSUB 400 goes to line 50
0050 LET C=3
0060 ON C GOTO 100,110,120 goes to line 120
PRINT

The PRINT statement displays output on the terminal. The output consists of fields comprised of string
literals and numeric expressions. Blank lines are also supported (i.e., PRINT with no string literal or
expression specified). Two separators are permitted between fields:

* A comma following a string or expression causes the next field to be printed at the next tab
column. Tab stops are every 8 columns. If printing a field would exceed the maximum output
line length, it will automatically be moved to the next line.

* A semicolon following a string or expression leaves one space between the current field and the
next field.

The PRINT command normally sends a carriage return/line feed to the terminal after printing the
specified fields. However, the PRINT line may end with a comma or semicolon. In that case, no
carriage return/line feed is sent and output will continue on the same line.

Syntax: <line> PRINT [{<string>|<expr>}[{,|;}{<string>|<expr>}]...1[{,|:}]

RANDOMIZE

The RANDOMIZE statement resets the random number generator to start at a different value when the
RND function is called. By default (i.e., if RANDOMIZE is not used), the RND function will return
the same sequence of random numbers each time the program is run. This is by design and helps when
debugging programs that use random numbers.

Syntax: <line> RANDOMIZE

Examples:
0020 RANDOMIZE

17

READ/DATA

The READ and DATA statements are used to initialize variables, typically arrays although scalar
variables can be initialized as well.

The DATA statement supplies a list of values that can be assigned to variables (scalar or array
elements) by the READ command. Only constant values are allowed in the DATA list.

DATA statements can appear anywhere in the program; they do not have to precede the READ call that
reads from them. The number of elements in a DATA statement does not have to match the number of
variables in a READ statement. All DATA statements effectively combine to create a single list; when
one DATA statements values are exhausted, Toy BASIC just looks for the next DATA statement to
continue supplying data for the current or additional READ statements.

The READ statement reads values from the DATA statements in the program and assigns the values
read to the specified variable(s).

Syntax: <line> DATA <val>[,<val>...]
<line> READ <var>[,<var>...]

Examples:
0010 DIM D(12)
0020 DATA 31,28,31,30,31,30,31,31,30,31,30,31
0030 FOR I=1 TO 12

0040 READ D(I) initializes the D array with the number of days in each month
0050 NEXT I

0060 READ 2A,B,C sets A=1, B=2, C=123

0070 DATA 1,2

0080 DATA 123

REM

The REM statement includes explanatory text in a program. REM statements do not affect program
operation in any way (except for the slight overhead involved in skipping over them). They are
effectively treated as NOP (no-operation) statements. Except that NOP statements don't exist in
BASIC. But if they did, they wouldn't do anything.

Syntax: <line> REM [<text>]

The <text> may contain any of the characters allowed in string literals (see below). Double quote
characters are also allowed, as the <text> does not need to be enclosed in quotes as it does with a string
literal.

Examples:
0010 REM THIS PROGRAM SIMULATES 100 COIN FLIPS
0020 REM
0030 REM MORE “EXPLANATION” NEEDED...

18

STOP

The STOP statement suspends execution of the program. A stopped program may be resumed with the
CONTINUE command.

Syntax: <line> STOP

Examples:

1000 STOP

19

20

Functions

The following functions are built in. They may be used in a numeric expression.

ABS

Returns the absolute value of the argument.

Syntax: ABS (<expr>)

Examples:
0010 LET A = ABS(-1) the value of Ais 1
0020 LET B = ABS(14) the value of B is 14
0030 LET C = ABS(7-12) the value of C is 5

SGN

Returns the “sign” of the argument: +1 if the argument is positive, -1 if it is negative, and 0 if it is zero.

Syntax: SGN (<expr>)

Examples:
0010 LET A = SGN(1234) the value of Ais 1
0020 LET B = SGN(7-12) the value of B is -1
0030 LET C = SGN (A+B) the value of C is 0

RND

Returns a non-negative pseudo-random number.
Syntax: RND (<expr>)
The returned value is between 0 and <expr>-1, inclusive. Thus, <expr> must resolve to a positive

number. See the description of the RANDOMIZE statement for a discussion of the number sequence
generated by calls to the RND function.

Examples:
0010 LET A = RND(100) the value of A is between 0 and 99, inclusive
0020 LET B = RND(0) invalid
0030 LET C = RND(-123) invalid

21

22

Appendix A: RAM Usage

The processor has sixteen 256-byte banks of RAM, numbered 0 through 15. Bank 0 is special in that
the first 96 bytes (60 hex) are accessible via the “Access Bank.” Bank 15 is special in that only 56
bytes of general purpose memory are available; the rest of bank 15 contains processor Special Function
Registers (SFRs).

Toy BASIC uses banks 0 and 1 of RAM for program control, variable and temporary storage. Banks 2
through 14 are used for storing the BASIC program. The 56 bytes of available RAM in bank 15 are
used for array variables and READ/DATA statements. This provides 13 full banks or 3328 bytes for
program storage. However, the stored program is not the ASCII text as input. See Appendix <?> and
Appendix <?> for descriptions of program encoding and compression techniques used to reduce RAM
usage.

Bank 0:
Offset Length Description
(hex) (dec)
00 2 Variable A value
02 2 Variable B value
04 2 Variable C value
06 2 Variable D value
08 2 Variable E value
0A 2 Variable F value
0C 2 Variable G value
0E 2 Variable H value
10 2 Variable I value
12 2 Variable J value
14 2 Variable K value
16 2 Variable L value
18 2 Variable M value
1A 2 Variable N value
1C 2 Variable O value
1E 2 Variable P value
20 2 Variable Q value
22 2 Variable R value

23

Offset Length Description
(hex) (dec)

24 2 Variable S value

26 2 Variable T value

28 2 Variable U value

2A 2 Variable V value

2C 2 Variable W value

2E 2 Variable X value

30 2 Variable Y value

32 2 Variable Z value

34 2 Current line number (Program Counter)

36 2 End of program code data

38 2 Start of program expression data

3A 1 Input column

3B 1 Output column

3C 8 Temporary Registers

44 2 Current random number value

46 6 Temporary statement record

4C 1 Input character temporary

4D 1 Print column

4E 1 Run state

4F 1 Offset within current DATA line

50 4 Expression evaluator result value

54 4 Expression evaluator LValue

58 4 Expression evaluator RValue

5C 2 Temporary storage to save value of FSR2

S5E 2 (Reserved)

60 80 Input buffer

BO 80 Output buffer

24

Bank 1:

Offset Length Description
(hex) (dec)
00 1 GOSUB stack offset
01 1 Reserved
02 32 GOSUB stack
22 2 Expression eval stack offset
24 220 Expression eval stack
Banks 2-14:
Offset Length Description
(hex) (dec)
00 256 BASIC program data

Banks 2-14 are treated as one 3328-byte block of memory, but it contains two types of data: program
code data and program expression data. Program code data is stored starting at the lowest address and
grows upward. Program expression data is stored starting at the high end of the data space and grows
downward. Free space, available to either data type, is in the middle.

Code data

‘End of program code data } —

‘Start of program expr data ‘ %ee space

AL

Expr data

25

~ 3328-byte program space
(RAM Banks 2-14)

Bank 15:

Offset Length Description

(hex) (dec)
00 2 Array variable A buffer pointer
02 2 Array variable B buffer pointer
04 2 Array variable C buffer pointer
06 2 Array variable D buffer pointer
08 2 Array variable E buffer pointer
0A 2 Array variable F buffer pointer
0C 2 Array variable G buffer pointer
0OE 2 Array variable H buffer pointer
10 2 Array variable I buffer pointer
12 2 Array variable J buffer pointer
14 2 Array variable K buffer pointer
16 2 Array variable L buffer pointer
18 2 Array variable M buffer pointer
1A 2 Array variable N buffer pointer
1C 2 Array variable O buffer pointer
1E 2 Array variable P buffer pointer
20 2 Array variable Q buffer pointer
22 2 Array variable R buffer pointer
24 2 Array variable S buffer pointer
26 2 Array variable T buffer pointer
28 2 Array variable U buffer pointer
2A 2 Array variable V buffer pointer
2C 2 Array variable W buffer pointer
2E 2 Array variable X buffer pointer
30 2 Array variable Y buffer pointer
32 2 Array variable Z buffer pointer
34 2 Current DATA line number
36 2 Temporary storage for READ statement
38 200 PIC Processor Special Function Registers (SFRs)

26

An array variable buffer contains 1 byte that holds the number of array elements, followed by (2 * # of
elements) bytes that hold the data. An unallocated array will have a null (0) pointer in bank 15.

27

28

Appendix B: Program Encoding

Statements are not stored in RAM as the ASCII text that was input, but are encoded for efficiency (both
in terms of memory space and execution time). Each statement is encoded as six bytes in the code data
section of RAM, with optional variable data stored in the expression data section of RAM. The six
bytes consist of two bytes that contain the line number (encoded as a Binary Coded Decimal (BCD)
value), one byte that contains the opcode (defined below) for the statement, and three bytes that contain
either additional data for the statement or a pointer to extended data in the expression data section of

RAM.

Opcodes

Line. Num

OP

-variable-----

The opcodes are defined in the following table, along with the form of the variable data:

Value Statement Variable Data
(hex)
00 END Empty
01 STOP Empty
02 RANDOMIZE Empty
03 GOTO Low 2 bytes hold target line number; high byte unused
04 GOSUB Low 2 bytes hold target line number; high byte unused
05 RETURN Empty
06 NEXT First byte holds variable register address
07-0F (Reserved)
10 LET CONST First byte holds target variable register address, remaining
2 bytes hold value
11 LET VAR First byte holds source variable name, second byte holds
target variable register address
12-14 (Reserved)
15 INPUT1 First byte contains variable register address
16 INPUT2 First 2 bytes contain variable register addresses

29

Value Statement Variable Data
(hex)
17 INPUT3 Contains 3 variable register addresses
18-1F (Reserved)
20 REM First byte unused; remaining 2 bytes hold pointer to text or
all zero if none
21 PRINT First byte unused; Remaining 2 bytes hold pointer to text
or all zero if none
22 LET First byte holds target variable register address; remaining
2 bytes hold pointer to expression string
23 IF First byte unused; Remaining 2 bytes hold pointer to IF-
GOTO structure
24 FOR First byte holds control variable register address;
remaining 2 bytes hold pointer to FOR structure
25 FOR-FIXED First byte holds control variable register address;
(not implemented) remaining 2 bytes hold pointer to FOR-FIXED structure
26 INPUT First byte unused; remaining 2 bytes hold pointer to
INPUT structure
27 ON-GOTO First byte holds variable register address; remaining 2
bytes hold pointer to ON-TARGETS structure
28 ON-GOSUB First byte holds variable register address; remaining 2
bytes hold pointer to ON-TARGETS structure
29 LET-ARRAY First byte holds variable register address; remaining 2
bytes hold pointer to LET-ARRAY structure
2A DATA First byte unused; remaining 2 bytes hold pointer to DATA
structure
2B READ First byte unused; remaining 2 bytes hold pointer to
READ structure
2C-3F (Reserved)
Notes:

* Opcodes 00-1F do not contain a pointer in the variable data field; Opcodes 20-3F do. This
makes freeing up memory easier when deleting or replacing a line.

e The INPUTI1, INPUT2, INPUT3 opcodes handle common cases of the input command, where it
is requesting input of one, two or three values, respectively. The INPUT opcode handles the
more general case.

30

* The LET CONST opcode handles the common case where a constant value is assigned to a
variable (e.g., LET A=0). The LET VAR opcode handles the common case where one
variable is assigned directly to another variable (e.g. LET A=B). The LET opcode handles the
more general case where the assigned value is an expression.

* The FOR-FIXED opcode handles the extremely common case where the start and end values
[and increment value] of the variable are constants or variables. It is not implemented in this
release.

Structures

Expression string
The Expression string is just the null-terminated ASCII string that contains the
expression to be evaluated (i.e., the input line to the right of the = sign with extra spaces
removed).

IF-GOTO structure
The IF-GOTO structure contains two bytes that contain the target line number (in BCD)
followed immediately by a null-terminated ASCII string that contains the conditional
expression to be evaluated (i.e., the input line between the IF and THEN keywords).

FOR structure
The FOR structure consists of a null-terminated ASCII string that contains the STEP
value, followed immediately by a null-terminated ASCII string that contains the
termination value expression, followed immediately by a null-terminated string that
contains the initial value expression. The STEP value string may be null (i.e., just a
single null byte), in which case the default step value of 1 will be used.

INPUT structure
The Input structure contains one byte that indicates the number of variables to be input,
followed immediately by bytes each of which contains a null-terminated string of the
variable (which may be an array element reference) to be input.

READ structure
The READ structure is the same as the INPUT structure.

DATA structure
The DATA structure contains one byte that indicates the number of values in the DATA
line, followed by a series of 2-byte integer values that contain the data.

ON-TARGETS structure
The ON-TARGETS structure contains one byte that indicates the number of target line
numbers contained in the structure, followed by a list of BCD line numbers
corresponding to a variable value starting at 1.

31

LET-ARRAY structure
The LET-ARRAY structure contains a null-terminated string for the subscript
expression, followed by a null-terminated string for the expression that is to be assigned
to the array variable.

32

Appendix C: Flash Memory Program Storage

The world's dumbest file system is implemented in flash memory for the long-term storage of
programs. There is no directory, no File Allocation Table. The flash memory consists of 4KByte
sectors (64 of them with the 256Kx8 chip used). All bytes of an erased sector contain the value FF hex,
and a sector can be erased with a single operation. Each 4KB sector consists of sixteen 256 byte pages.
A sector containing a program has a 20-byte header contained in it first page (Page 0). The header
consists of 16 bytes for the null-terminated program name, followed by 2 bytes that contain the
program's PROG_END value, followed by 2 bytes that contain the program's EXPR_START value.
Page 1 is unused.

Pages 2-14 contain the contents of Banks 2-14 of RAM when the program is loaded.

Page 15 is unused.

A program is stored in flash exactly as it is stored in RAM. SAVE and LOAD operations copy RAM
Banks 2-14 directly to or from pages 2-14 of flash memory.

33

34

jagram

icD

Schemat

Appendix D

1 3o 1 sbeyg ¢loeseesy J3UD| 3na3]g
21 0oy
J93ndwo] Jisyg hoy
Ny
(%)
lo;
° O st TN,
O OND
14 N |IIIII||L
5 .
(300 ° i-plled
6-gu zez-sy| O g{NI2y 1noad— oy
nozL NIzl
& 7] el TNDA OND N9
o _ SANITY 0T |5y
e O $7]41N0TL NITL (7
o2 61| 8 N—-—o9
e L s TN, SSh S5M g
* ram e iz ,
an1-gllzd 2£284ds +>E BT{1X¥ 228
200 7 el ZT|1X47908 1od 289 52 €|dso1
100550y 00d/ 98 5= F]
aND, 91 21 E2
f_ll. =T 1105/ ddh AT/ | 1
ani-pllsy ST{P05/€38 1N0X10/2350 {57 E
N | 2oy NIXT3/1950 [
NY -] 194 PN/ CBY [
B0 131081/ b5 [
ssh (%) ENY/EVY =
15 (= RW aNg 2o [
g§82B4dS21SS os 5 h 5{58¥ TNY/ T8
J— oS 0 oA eNoBvY
2 2 1dC o Ead 22X92481371d
] #am #3)
wor] ¢ d Gy P T EINI 2ay
T o~ B €01 ONY —{LINT 18
TR INI By
F—) gan
ELI. 1g31] 2031 PE] =1
243 3 Ny,
E EY3 Tl N,
™ aniellgy ar_uxw
T weatms d1n

N3,

MS

gsn ouoTuw

HE "E+

35

Parts List

Part ID Description

Mouser Part #

Cl1 1uF 16V ceramic chip capacitor C0805 80-C0805C105K4R

C2 4.7uF 10V ceramic chip capacitor C0805 80-C0805C475K8R
C3-C9 0.1uF 50V ceramic chip capacitor C0805 80-C0805C104K5R

IC1 3.3V 100mA LDO regulator TO92 863-LP2950ACZ-3.3G
IC2 PIC18F26K22 microcontroller SOIC-28 579-PIC18F26K22ISO
IC3 SST25PF020B 2mbit flash memory SOIC-8 579-020B-80-4C-SAE
IC4 SP3232ECN-L SOIC-16 narrow 701-SP3232ECN-L

n FCI Micro USB Connector 649-10103594-0001LF
12 (optional)

I3 DBOF right angle connector 571-5745781-4

J4 (unpopulated)

LED1 Red Clear LED 0805 859-LTST-C171EKT
LED2 Red Clear LED 0805 859-LTST-C171EKT
R1 100K THICK FILM CHIP RESISTOR 5% 0805 660-RK73B2ATTD104]
R2 1K thick film chip resistor 5% 0805 660-RK73B2ATTD102J
R3 IK thick film chip resistor 5% 0805 660-RK73B2ATTD102]
R4 lohm Thick Film chip resistor 5% 0805 660-RK73B2ATTDI1RO0J
SW1 4 position DIP switch 706-76SB04T

36

References

All of these documents were available online at the time this document was written.

[1]

2]

[3]
[4]
[5]
[6]
[7]

BASIC: A Manual for BASIC, the elementary algebraic language designed for use with
the Dartmouth Time Sharing System, Dartmouth College Computation Center, October
1964

Extended BASIC User's Manual, Eighth Revision, 093-000065-08, Data General
Corporation, November 1978

TINY BASIC User Manual, Tom Pittman, ITTY BITTY COMPUTERS Company, 1976
BASIC Language Reference Manual, C. P. Williams, Phase One Systems, 1980

Wang BASIC Language Reference Manual, Wang Laboratories, 1976

BASIC Computer Games: Microcomputer Edition, David H. Ahl, 1978

How do we tell truths that might hurt?, EWD498-0, Edsger W. Dijkstra, 1975

PIC is a registered trademark of Microchip Technology Incorporated.

In-Circuit Serial Programming and ICSP are trademarks of Microchip Technology Incorporated.

37

	Steve Toner
	Optional Fields
	Multiple Valid Parameters
	Typefaces
	Keyboard Input
	Introduction
	The BASIC Programming Language
	Background
	Hardware Features
	Software Features
	Keyboard Shortcuts and Standardized Output
	Limitations
	Pre-installed Sample Programs

	Operation
	Hardware
	Keyboard Input

	Commands
	CONTINUE
	DELETE
	DIR
	LIST
	LOAD
	NEW
	RENUMBER
	RUN
	SAVE
	SIZE
	WARRANTY

	Expressions
	String Literals
	Numbers
	Variables

	Functions
	Numeric Expressions
	Operations

	Statements
	Line Numbers
	DIM
	END
	FOR-NEXT
	GOSUB-RETURN
	GOTO
	IF
	INPUT
	LET
	ON...GOTO and ON...GOSUB
	PRINT
	RANDOMIZE
	READ/DATA
	REM
	STOP

	Functions
	ABS
	SGN
	RND

	Appendix A: RAM Usage
	Bank 0:
	Bank 1:
	Banks 2-14:
	Bank 15:

	Appendix B: Program Encoding
	Opcodes
	Structures

	Appendix C: Flash Memory Program Storage
	Appendix D: Schematic Diagram
	References

